On dilation and commuting liftings of n-tuples of commuting Hilbert space contractions
نویسندگان
چکیده
منابع مشابه
m-Isometric Commuting Tuples of Operators on a Hilbert Space
We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a the...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولUnitary N-dilations for Tuples of Commuting Matrices
We show that whenever a contractive k-tuple T on a finite dimensional space H has a unitary dilation, then for any fixed degree N there is a unitary k-tuple U on a finite dimensional space so that q(T ) = PHq(U)|H for all polynomials q of degree at most N .
متن کاملIsometric Dilations of Non-commuting Finite Rank N-tuples
A contractive n-tuple A = (A1, . . . , An) has a minimal joint isometric dilation S = (S1, . . . , Sn) where the Si’s are isometries with pairwise orthogonal ranges. This determines a representation of the Cuntz-Toeplitz algebra. When A acts on a finite dimensional space, the wot-closed nonself-adjoint algebra S generated by S is completely described in terms of the properties of A. This provid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
سال: 2020
ISSN: 2300-133X,2081-545X
DOI: 10.2478/aupcsm-2020-0010